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A catalytic Mannich reaction of a simple ester with no acti-
vating functionality at the α-position via a product-base
mechanism was reported. The desired Mannich adducts
were obtained in high yields using a catalytic amount of KH.
This is a rare example of a Brønsted base-catalyzed Mannich
reaction of unactivated esters as substrates.

Brønsted base-catalyzed carbon–carbon bond forming reactions
are among the most fundamental and atom economical reactions
for the construction of organic molecules.1 In the reactions, one
key point for efficient promotion of the reaction is basicity of cat-
alysts, and strong Brønsted bases could enhance the reactions
smoothly and also expand the scope of available substrates sig-
nificantly. On the other hand, protonation of intermediates after
bond-forming steps is also another key point for smooth catalyst
turnover in base-catalyzed processes. When strong Brønsted base
catalysts are employed in reactions, the protonation step often is
not efficient due to the low Brønsted acidity of the corresponding
conjugate acids of their counter anions, and the catalyst turnover
could be stopped. Furthermore, when the protonation step is not
efficient, retro reactions from the formed intermediates could
occur. Therefore, base species with high Brønsted basicity have
yet to be used as effective catalysts. However, if an intermediate,
which could be preferred to be a “product-base,” had strong
Brønsted basicity, smooth deprotonation of the next substrate by
this reaction intermediate could smoothly complete the catalytic
cycle and so catalyst turnover would successfully occur even
when a strong base species is used as the catalyst.2

Direct-type Mannich reactions of enolizable carbonyl com-
pounds with imines provide an efficient method for the prep-
aration of β-aminocarbonyl compounds in a single step.3

Recently, catalytic activation of carbonyl compounds by basic
catalyst systems to form carbanions or their equivalents has been
widely developed in several carbon–carbon bond forming reac-
tions.4 However, methodology for catalytic activation of

carbanion precursors bearing less acidic hydrogens, such as
esters with no activating functionality at the α-position, has not
been well established.5 Deprotonation of esters to form the corre-
sponding enolate species is generally conducted using a stoichio-
metric amount of a strong Brønsted base system, for example,
metallated carbon or nitrogen molecules such as alkyl lithiums,
lithium diisopropylamide (LDA), etc. However, their conjugate
acids, for example diisopropylamine in the case of LDA, are less
acidic to protonate the intermediates efficiently. On the other
hand, in the case of Mannich reactions, it has been known that
anionic nitrogen species form after the addition of carbanions to
the imino carbons, which could then subsequently deprotonate
the next ester substrate and so promote the reaction catalytically.
In this report, we describe a very rare example of strong base-
promoted catalytic Mannich reactions using simple esters as
substrates.

Based on our concept, we focused on use of N-aryl imines
containing a methoxy group as a substrate. It was anticipated
that this formed a more basic nitrogen anion as a Mannich inter-
mediate after addition of a carbanion, and that the aryl group in
the subsequently formed products could be removed by oxidative
cleavage using cerium ammonium nitrate (CAN),6 etc. Firstly we
attempted the Mannich reaction of N-o-methoxyphenyl (OMP)
benzaldehyde imine (1a) with 2 equivalents of tert-butyl isobu-
tyrate (2a) in THF (0.4 M) at 0 °C for 24 h in the presence of
5 mol% of potassium bistrimethylsilylamide (KHMDS). The
OMP group was expected to prevent undesired intramolecular
cyclization to the corresponding β-lactam by increasing steric
hindrance around the nitrogen atom. As expected, the desired
Mannich adduct was obtained in 88% yield. To simplify the
reaction system, we then employed a strong Brønsted base, pot-
assium hydride (KH, 5 mol%), whose conjugate acid is H2, not
an acidic species. To our delight, the desired product was
obtained in high yield (Table 1, entry 1). This result clearly indi-
cated that the Mannich reaction proceeded via the product base
mechanism.7 Optimization of the reaction conditions showed
that the reaction proceeds smoothly in tert-butyl methyl ether
(TBME) using a slight excess of the imine to afford the desired
product in high yield (entry 2). Next we investigated the effect
of imine substrates; other OMP imines derived from aromatic
aldehydes were also found to be reactive under the same opti-
mized reaction conditions. Imines bearing electron-donating
groups reacted with 2a smoothly, with the corresponding

†This article is part of the Organic & Biomolecular Chemistry 10th
Anniversary issue.
‡Electronic supplementary information (ESI) available: General pro-
cedure of the Mannich reaction, 1H and 13C NMR data of the products
obtained. See DOI: 10.1039/c2ob25522g
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products being obtained in good yields (entries 3 and 4). On the
other hand, the effect of electron-withdrawing groups was also
positive, with high yields also being obtained (entries 5 and 6).
To examine steric effects, 1-naphthyl and 2-naphthyl imines
were investigated; while a high yield was obtained for the reac-
tion when the imine containing 2-naphthyl group (entry 7), the
imine with the 1-naphthyl group showed lower reactivity, prob-
ably due to large steric hindrance (entry 8). While the imine with
a heteroaromatic, 1-furyl group, reacted with 2a (entry 9), the
reaction with α,β-unsaturated aldehyde-derived imine did not
proceed (entry 10). Other esters were also examined; tert-butyl
propionate (2b) was found to be a good substrate, with the
desired Mannich products being obtained in good yield,
although the diastereoselectivity was still moderate. When tert-
butyl acetate (2c) was employed, only a trace amount of the
desired product was obtained (Scheme 1).

The proposed catalytic cycle is shown in Scheme 2. Firstly,
the α-hydrogen of ester 2a was extracted by a strong base, KH,
to form molecular hydrogen and the corresponding potassium
enolate 2a-K, which reacts with imine 1a to form the product
base 3aa-K. The product base 3aa-K deprotonates the next ester
2a to afford the desired product 3aa, with the potassium enolate
2a-K being regenerated to complete the catalytic cycle. The key
of the base catalysis should be an effective deprotonation of the
ester by the strong product-base 3aa-K. On the basis of this reac-
tion mechanism, Mannich reactions of other carbanion precur-
sors with less acidic active hydrogens should be possible.

In conclusion, we have revealed that a truly catalytic Mannich
reaction of a simple ester with no activating functionality at the
α-position proceeds smoothly via a product-base mechanism.
The desired Mannich adducts of tert-butyl isobutyrate 2a and
several aromatic imines were obtained in high yields using a cat-
alytic amount of KH as a strong base species. This is a very rare
example of a Brønsted base-catalyzed Mannich reaction of un-
activated esters as substrates. This concept, the product-base
mechanism, could be applicable to other base catalyzed reactions
using carbanion precursors bearing less acidic hydrogens, and
positive planning with regards to reactions based on this concept
could expand the utility of base catalysis. Further investigations
to improve the Mannich reaction as well as to investigate stereo-
selective catalysis by means of functionalizing the metal are
ongoing.
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